MODEL VME-100 ANI ENCODER

GE Star®, MDC-1200®, DTMF IDENTIFICATION ENCODER for VERTEX/STANDARD RADIOS

Instruction Manual
Manual Number 05 30 0018
Rev 101105

© 2004 – 2007 Cimarron Technologies Corp., Escondido, CA, USA.
All rights reserved. No part of this manual may be reproduced in any way without the express written permission of Cimarron Technologies Corporation.
Contents

CHAPTER 1 FEATURES ... 5
What Is the VME-100 .. 5
Capabilities ... 5
Specifications ... 6

CHAPTER 2 PROGRAMMING ... 7
CE-73 Programming Software ... 7
Uploading and Downloading ... 9
Radio Programming Software .. 9
Programmable Parameters .. 10
Main Menu .. 10
Common – Emergency ... 10
Common – MDC-1200® ... 10
Common – GE Star® .. 10
Common – DTMF .. 11
Definitions .. 11
Attack Delay: .. 11
PTT ANI repeat timer: ... 11
Number of repeat emergency transmissions: 11
Time between emergency repeats: ... 11
Time out timer: ... 11
Open Microphone Monitor on Emergency TX time 12
Open Microphone Monitor on Emergency RX time 12
Send ID at beginning: ... 12
Send ID at end: .. 12
TX Data Level: .. 12
Sidetone with PTT ANI: ... 12
Unkey courtesy tone: ... 12
Emergency TX warning tone: ... 12
Enable Keypad: ... 12
Enable Manual Keypad DTMF: .. 12
DTMF Keypad auto transmit ... 13
GE Star® format type: ... 13
GE Star® PTT ID, Emergency ID .. 13
MDC-1200® PTT ID, Emergency ID ... 13
MDC-1200® PTT and Emergency Message Type 13
DTMF character duration .. 13
DTMF inter-character duration ... 13
DTMF PTT ID, Emergency ID ... 13

Memory Characteristics ... 14

CHAPTER 3 OPERATION .. 15

Viewing the Programmed ID ... 15
PTT Operation .. 15
Emergency Message ... 15
Emergency Message Open Microphone Monitor 15
Time-Out-Timer and Stuck-Microphone 16

DTMF Operations .. 16
Manual Keypad DTMF .. 16
DTMF Keypad auto transmit .. 16
DTMF ANI .. 16

CHAPTER 4 TECHNICAL INFORMATION 17

GE Star® Message Types .. 17
MDC-1200® Message Type .. 17
GE Star® Format Types ... 18
Format Definitions ... 18
Radio Connections .. 19
Micro to Micro Communications .. 19
Software Version Verification .. 19
Reloading Flash ... 19
Schematic .. 21
Parts List .. 22
Parts Layout .. 23
Test Pinout .. 23

CHAPTER 5 PRODUCT SUPPORT 24
CHAPTER 1
Features

What Is the VME-100

The Cimarron Technologies Model VME-100 is a plug-in ANI encoder module capable of PTT ANI and Emergency ANI in GE Star, MDC-1200 or DTMF signaling format in Vertex communications radios. The unit provides Automatic Numeric Identification of a specific radio transmitter each time the microphone press-to-talk (PTT) switch is activated. Emergency messages are sent by depressing the designated emergency button for greater than a programmed period. Manual DTMF generation is available as well as automatic ANI.

Capabilities

- Identify every transmission source with the assigned ANI ID in Signaling formats of MDC-1200, GE Star or DTMF
- Manual button press DTMF generation
- Programmable automatic radio key-up with DTMF keypad presses
- Programmable ANI debounce time limits data bursts during continued conversations
- “Go-ahead” beep sounds when ready for voice transmission
- Courtesy beep transmitted when radio is unkeyed
- Emergency message sent with emergency button press
- Programmable open microphone monitor during emergency
- Stuck microphone identification
- Time-Out-Timer with alert tone
- ANI sent at beginning, end or both
Specifications

<table>
<thead>
<tr>
<th>Data Format</th>
<th>GE Star®</th>
<th>MDC-1200®</th>
<th>DTMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation Type</td>
<td>PSK (Phase Shift Key)</td>
<td>FSK</td>
<td>DTMF</td>
</tr>
<tr>
<td>Rate</td>
<td>400 bps on 1600hz carrier</td>
<td>1200/1800 Hz</td>
<td>Character duration and pause 25mS/step, 1000mS max</td>
</tr>
<tr>
<td>Hard ID Range</td>
<td>0001 to 16,383</td>
<td>0001-DEEE</td>
<td>0001-FFFFFFFF</td>
</tr>
<tr>
<td>ID Locations</td>
<td>ANI at Beginning, End or Both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messages</td>
<td>PTT ANI, Emergency, TOT. Messages can be changed to any allowable GE Star® message.</td>
<td>PTT ANI, Emergency</td>
<td>PTT ANI, Emergency</td>
</tr>
<tr>
<td>Sidetone</td>
<td>1 KHz during attack delay and transmission of data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Length</td>
<td>3 ½ messages each.</td>
<td>Fixed length 180mS</td>
<td>Character duration and pause in 25mS/step, 1000mS max</td>
</tr>
<tr>
<td>Preamble Length</td>
<td>24 bits.</td>
<td>Fixed length</td>
<td>N/A</td>
</tr>
<tr>
<td>Attack Delay</td>
<td>0 mS to 1000 mS programmable in 50 mS steps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANI Repeat Timer</td>
<td>(Time since last PTT press. If less, don’t send ANI) Programmable 0 S (Send every PTT); 10 S; 20 S; 40 S; 60 S; 90 S; 120 S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming</td>
<td>Programmed via Vertex/Standard CE-73 programming software.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Interface</td>
<td>Connects to mating accessory port on host radio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>3.6 VDC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>5 mA constant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating: -30°C to +60°C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>0% to 95% RH (non-condensing).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 2
Programming

CE-73 Programming Software

The VME-100 is programmed while installed in the host radio. This is accomplished by placing the host radio into sub-clone mode and then attaching the appropriate programming cable and opening the Vertex CE-73 software. The radio must be in sub-clone mode before attempting upload or download. Refer to the following table for radio specifics:

<table>
<thead>
<tr>
<th>Radio Model</th>
<th>Programming Software</th>
<th>Firmware Version</th>
<th>Sub Clone Procedure</th>
<th>Sub Flash Procedure</th>
<th>Optimum TX level setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX-410/420</td>
<td>CE-64 Ver 1.10</td>
<td>1.2</td>
<td>[PTT] + [Side 2] + Pwr on</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>VX-537</td>
<td>CE-65 Ver 1.05</td>
<td>1.14</td>
<td>[PTT] + [Top Orange] + Pwr on</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>VX-600/900</td>
<td>CE-39 Ver 1.25</td>
<td>1.53</td>
<td>[PTT] + [Top Orange] + Pwr on</td>
<td>[Top Orange] + Pwr on</td>
<td>1</td>
</tr>
<tr>
<td>VX-800</td>
<td>CE-31 Ver 1.18</td>
<td>1.54</td>
<td>[PTT] + [Top Orange] + Pwr on</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>VX-820/920</td>
<td>CE-59 Ver 2.25</td>
<td>1.59</td>
<td>[PTT] + [Top Orange] + Pwr on</td>
<td>N/A</td>
<td>3</td>
</tr>
<tr>
<td>VX-4100/4200</td>
<td>CE-59 Ver 2.25</td>
<td>1.85</td>
<td>[▲] + Pwr on</td>
<td>N/A</td>
<td>3</td>
</tr>
</tbody>
</table>

Listed firmware version and programming software version is the minimum required to support the VME-100.

The CE-73 Main screen is presented upon startup

Select VME-100

Then navigate through the various screens making selections as required for your application.
Uploading and Downloading

Uploading transfers information from the VME-100 to the CE-73 programming software. Downloading transfers information from the CE-73 programming software into the VME-100.

Radio Programming Software

The VME-100 board must be installed into the radio before attempting to use the associated radio programming software. This is so that the software detects the presence of the VME-100 and makes available additional options that are specific to the VME-100. Once uploading from the radio, go to the “Signaling” menu and under “ANI” select “Option ANI”. Now signaling formats GE Star®, MDC-1200® and DTMF will be available on a per-channel basis. The desired format is selected in the “SIG” column (not the ANI column) of the main programming window. Options are (-) = Off; (1) = GE Star®; (2) = MDC-1200®; (3) = DTMF.
Programmable Parameters

The following parameters are programmable using the Vertex/Standard supplied CE-73 programming software. Default values are italicized in brackets to the right of the parameter.

Main Menu

- **Attack Delay** (N/A for end send) 0ms to 1000ms in steps of 50ms. [Default 300mS]
- **PTT ANI repeat timer** (time since last PTT press. If less, don’t send PTT ANI) (0=send every PTT; 10s, 20s, 40s, 60s, 90s, 120s) [Default 0]
- **TX Time out timer** (30s, 60s, 90s, 120s) [Default: 60s]
- **ANI at START**: Send ID at beginning (Y/N) [Default Yes]
- **ANI at End**: Send ID at end (Y/N) [Default No]
- **PTT Sidetone** (beginning send only) (Y/N) [Default Yes]
- **PTT courtesy tone** (Y/N) [Default No]
- **Enable keypad** (Y/N) [Default Yes]
- **TX Data Level** (0,1,2,3) [Default 1]

Common – Emergency

- **Repeat Max**: Number of repeat emergency transmissions. (1, 5, 10, 15, 20, forever) [Default =5]
- **Repeat Period**: Time between emergency repeats. (5s, 10, 20, 30s) [Default=10s]
- **Warning Tone**: Emergency TX warning tone (Y/N) [Default No]
- **Open Microphone Monitor on Emergency TX time** (0s to 55s, 5s steps) [Default 0s]
- **Open Microphone Monitor on Emergency RX time** (0s to 55s, 5s steps) [Default 0s]

Common – MDC-1200®

- **PTT ID** (1 – DEEE) [Default 1234]
- **PTT Message value** (0x0000-0xFFFF) [Default 0x8001]
- **Emergency ID** (1 – DEEE) [Default 1234]
- **Emergency Message value** (0x0000-0xFFFF) [Default 0x8000]

Common – GE Star®

- **Format type** (A through P) [Default B]
- **PTT ID** (1 – 16383) [Default 9999]
PTT Message value (0x00-0x7F) [Default 0x01]

TOT ID (1 – 16383) [Default 9999]

TOT Message value (0x00-0x7F) [Default 0x09]

Emergency ID (1 – 16383) [Default 9999]

Emergency Message value (0x00-0x7F) [Default 0x07]

Common – DTMF

PTT ID (1 – FFFFFFFF) [Default = 11234]

Emergency ID (1 – FFFFFFFF) [Default = 71234]

Character duration (25mS through 1000 mS in 25 mS steps) [Default 50 mS]

Inter-character duration (25 mS through 1000 mS in 25 mS steps) [Default 50 mS]

Enable Manual Keypad DTMF (Y/N) [Default Yes]

Keypad auto transmit (Y/N) [Default No]

Definitions

Attack Delay:
The period of time from when the user keys the radio and the data begins to be transmitted. This delay allows the communications system to stabilize and be ready for transmission.

PTT ANI repeat timer:
Used to reduce the amount of data transmissions. If the selected time since the last PTT press is not exceeded, data is not transmitted with that PTT press.

Number of repeat emergency transmissions:
Number of times that an emergency message is transmitted.

Time between emergency repeats:
When in the emergency mode, if the number of repeat emergency transmissions is not “One”, this is the time that will be waited between emergency transmissions.

Time out timer:
If the radio is held keyed up for greater than the selected time, the ID is transmitted and the radio is automatically unkeyed.
Open Microphone Monitor on Emergency TX time
If not set to zero, once an emergency is activated, the radio will key up and transmit ambient noise for this period of time. It will then unkey and remain unkeyed for a programmed amount of time and then repeat the process. It will alternate between TX and RX throughout the emergency cycle. The length of the cycle is determined by the settings of “Number of repeat emergency transmissions” and “Time between emergency repeats”. If the value is set to zero, there will be no open microphone monitor.

Open Microphone Monitor on Emergency RX time
If open microphone monitor on emergency TX time is not set to zero, the radio will remain unkeyed for this period of time between TX times.

Send ID at beginning:
If programmed “Yes”, the ID will be transmitted when the user keys the radio.

Send ID at end:
If programmed “Yes”, the ID will be transmitted when the user unkeys the radio.

TX Data Level:
Changes the data output level in four steps. Enter a value between 0 and 3 that provides a data deviation that is just below radio voice deviation.

Sidetone with PTT ANI:
If programmed “Yes”, a tone will sound through the local speaker to advise the user to hold off talking. Prevents “Voice syllable clipping” which could occur during data transmission.

Unkey courtesy tone:
If programmed “Yes”, a tone will be transmitted when the user unkeys to inform the listener that they may now transmit.

Emergency TX warning tone:
If programmed “Yes”, a warning tone will sound through the local speaker to advise the user that an emergency message is being transmitted.

Enable Keypad:
If programmed “No”, keypad presses are ignored.

Enable Manual Keypad DTMF
(Y/N) If enabled, DTMF tones will be generated when keypad buttons are pressed with the radio keyed. The associated tone continues to be transmitted until the button is released. The radio microphone is muted for the duration of the button press. Enabling this feature and not designating ANI type for the channel will permit manual DTMF generation without PTT ANI. The default is ‘YES’.
DTMF Keypad auto transmit

(Y/N) If enabled, the radio will automatically go into transmit mode if keypad buttons are pressed and DTMF is generated. If this feature is enabled, ANI will be disabled. Additionally, after a button is released, the radio will remain keyed for one second to await further button presses. The length of the transmitted DTMF tone is the value programmed as “DTMF character duration”. The radio microphone is muted for the duration of the function. If PTT ANI transmission is required, this feature must be disabled and the user must manually key the radio while pressing buttons for DTMF transmission. The default is NO.

GE Star® format type

(A through P) This selection defines which of the sixteen GE Star® formats are in use. The default is B.

GE Star® PTT ID, Emergency ID

(1 – 16383) The actual maximum value depends on the GE Star® format type selected. Generally, the PTT ID and the Emergency ID in GE Star® are the same, however, they could be programmed different if desired. A radio cannot be programmed for an ID of 0 (zero). The default for both is 9999.

MDC-1200® PTT ID, Emergency ID

(1 – DEEE) Generally, the PTT ID and the Emergency ID are the same, however, they could be programmed different if desired. A radio ID cannot contain the character F nor can it begin with the character E as these are defined as wildcards. The default for both is 1234.

MDC-1200® PTT and Emergency Message Type

To increase flexibility of the VME-100 and enhance compatibility with existing communications systems, the format of encoded MDC-1200® messages can be modified. The default message type for a PTT ANI is represented by 0x8001 and the default message type for an Emergency ANI is 0x8000. These parameters should not be changed without a thorough understanding of the signaling system and existing signaling codes.

DTMF character duration

(25 mS through 1000 mS in 25 mS steps) This timer is active for PTT and Emergency ANI and DTMF Keypad Auto transmit mode. Each ANI character is generated for this amount of time. The default is 50 mS.

DTMF inter-character duration

(25 mS through 1000 mS in 25 mS steps) This timer is active only for PTT and Emergency ANI. The time selected is the silent gap between individual DTMF digit transmissions. The default is 50 mS.

DTMF PTT ID, Emergency ID

(1 – FFFFFFFF) In DTMF signaling, the PTT ID and the Emergency ID are different so the base can determine what is an emergency message. Systems using dispatch consoles generally define a DTMF PTT ID as a
number beginning with a 1 and DTMF Emergency ID’s begin with a 7.
The default PTT ID is 11234 and the default emergency ID is 71234.

Memory Characteristics

Programming parameters are stored in non-volatile memory and will be retained when the radio is turned off or when the battery is removed.
CHAPTER 3

Operation

Viewing the Programmed ID

To review the programmed ID on the channel selected, press the # (pound) key. Press the # key again or wait five seconds to return to the channel information presentation.

PTT Operation

On specified radio channels, with the press of the PTT button, The VME-100 disables the radio microphone and then transmits the ANI ID. While the radio is transmitting the data, a tone sounds in the local speaker to advise the user to hold off talking. After the data is transmitted, the PTT sidetone stops and the microphone is activated. The digital burst can be programmed to occur when the switch is first pressed, or when the switch is released, or at both times. If the burst is programmed for transmission when the PTT is released or the radio is on a non-signaling channel, a short “go ahead” beep will be heard. When the PTT is released and transmission is over, a courtesy beep is transmitted to inform the listener that they can now transmit.

The PTT Sidetone and courtesy beep can be individually deactivated in personality programming.

To reduce the amount of data transmissions, data can be programmed to not occur during continuing conversations. A value can be selected for the time since the last PTT press. If the selected time is not exceeded in subsequent Key-ups, data is not sent. Programmable times are 0, 10s, 20s, 40s, 60s, 120s. [Default = 0]. If the time selected is 0 (zero), ANI will be sent with every PTT press.

Emergency Message

An Emergency message transmission is activated whenever the designated emergency button is held down for greater than the programmed time.

The emergency message transmission will be repeated a programmed number of times with a programmed period between transmissions. The repeats will be transmitted regardless of radio status. Available times are as follows:

Number of repeat emergency transmissions. (1, 5, 10, 15, 20, forever) [Default = 5].

Time between emergency repeats. (5s, 10, 20, 30s) [Default=10s].

If desired, a warning tone can be sounded in the local speaker to advise the user that an emergency message has been sent.

In conjunction with a properly configured radio personality, the radio will change channels prior to sending the emergency message.

Emergency Message Open Microphone Monitor

If this feature is enabled, when an emergency is activated, the radio will key up and transmit ambient noise for a programmed period of time. It will then unkey and remain unkeyed for a programmed amount of time and then repeat the process. It will alternate between TX and RX throughout the emergency cycle. The length of the cycle is determined by the settings of “Number of repeat emergency transmissions” and “Time
between emergency repeats”. If the value is set to zero, there will be no open microphone monitor.

Time-Out-Timer and Stuck-Microphone

The Time-Out-Timer feature terminates a transmission that is longer than the programmed time. Available times are 30s, 60s, 90s, 120s. [Default = 60s]. The radio will automatically unkey and a low frequency (500 Hz) tone will be heard in the local speaker for four seconds or until the radio is unkeyed. The value of the time-out-timer is programmable in the radio personality programming.

To permit identification of the offending radio, prior to un-keying the transmitter, the VME-100 will send the radio ID.

DTMF Operations

The VME-100 is capable of generating DTMF tones in three modes.

Manual Keypad DTMF

DTMF tones are generated when keypad buttons are pressed with the radio keyed. The DTMF tone continues to be transmitted until the button is released. The radio microphone is muted for the duration of the button press. This feature can be used on channels that use GE Star or MDC-1200 ANI signaling. Enabling this feature and not designating ANI type (or designating the channel as a non-signaling channel) for the channel will permit manual DTMF generation without PTT ANI.

DTMF Keypad auto transmit

If enabled, the radio automatically goes into transmit mode when keypad buttons are pressed and DTMF is generated. If ANI is enabled, the auto transmit feature will be disabled. To activate the feature, the channel must be designated a signaling channel even though PTT ANI is disabled. Additionally, after a button is released, the radio will remain keyed for one second to await further button presses. The length of the transmitted DTMF tone is the value programmed as “DTMF character duration”. The radio microphone is muted for the duration of the function. If PTT ANI transmission is required, this feature must be disabled and the user must manually key the radio while pressing buttons for DTMF transmission.

DTMF ANI

Typically, in DTMF ANI, the PTT ID and the Emergency ID are different so the base decoder can determine what is an emergency message. Systems using dispatch consoles generally define a DTMF PTT ID as a number beginning with a 1 and DTMF Emergency ID’s begin with a 7. The length of a DTMF character is programmable 25 mS through 1000 mS in 25 mS steps. The pause between DTMF characters is programmable 25 mS through 1000 mS in 25 mS steps. DTMF ANI can be programmed for up to eight digits.
Chapter 4 Technical Information

GE Star® Message Types

The GE Star bits designated S2, S3, S4 and M1 through M4 are used to code various messages. The VME-100 can be programmed so that different message types are transmitted for PTT ANI, Emergency ANI and TOT ANI. The desired star code is selected via the CE 73 Vertex programming software. The table below describes the Star codes, the value to enter in the CE 73 software and the corresponding decoder displayed message:

<table>
<thead>
<tr>
<th>STAR CODE</th>
<th>CE73 GE Star Message code</th>
<th>C Plus Decoder display</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>000-0000</td>
<td>00</td>
<td>STATUS 0</td>
<td>Status</td>
</tr>
<tr>
<td>001-0000</td>
<td>10</td>
<td>STATUS 1</td>
<td>Status</td>
</tr>
<tr>
<td>010-0000</td>
<td>20</td>
<td>STATUS 2</td>
<td>Status</td>
</tr>
<tr>
<td>011-0000</td>
<td>30</td>
<td>STATUS 3</td>
<td>Status</td>
</tr>
<tr>
<td>100-0000</td>
<td>40</td>
<td>STATUS 4</td>
<td>Status</td>
</tr>
<tr>
<td>101-0000</td>
<td>50</td>
<td>STATUS 5</td>
<td>Status</td>
</tr>
<tr>
<td>110-0000</td>
<td>60</td>
<td>STATUS 6</td>
<td>Status</td>
</tr>
<tr>
<td>111-0000</td>
<td>70</td>
<td>STATUS 7</td>
<td>Status</td>
</tr>
<tr>
<td>000-0001</td>
<td>01</td>
<td>(none)</td>
<td>ANI ID and Sel Call Ack</td>
</tr>
<tr>
<td>000-0010</td>
<td>02</td>
<td>INTG ACK</td>
<td>Interrogate Ack</td>
</tr>
<tr>
<td>000-0011</td>
<td>03</td>
<td>REQ TALK</td>
<td>Request to talk</td>
</tr>
<tr>
<td>000-0100</td>
<td>04</td>
<td>MSSAGE C</td>
<td>Canned Message</td>
</tr>
<tr>
<td>000-0101</td>
<td>05</td>
<td>MSSAGE D</td>
<td>Canned Message</td>
</tr>
<tr>
<td>000-0110</td>
<td>06</td>
<td>TAXI BID</td>
<td>Taxi Bid</td>
</tr>
<tr>
<td>000-0111</td>
<td>07</td>
<td>EMRGENCY</td>
<td>Emergency</td>
</tr>
<tr>
<td>000-1000</td>
<td>08</td>
<td>CNCL ACK</td>
<td>Call Cancel Ack</td>
</tr>
<tr>
<td>000-1001</td>
<td>09</td>
<td>STUCKMIC</td>
<td>Stuck Microphone</td>
</tr>
<tr>
<td>000-1010</td>
<td>0A</td>
<td>MNTR ACK</td>
<td>Open Mic Monitor Ack</td>
</tr>
<tr>
<td>000-1011</td>
<td>0B</td>
<td>MSSAGE F</td>
<td>Canned Message</td>
</tr>
<tr>
<td>000-1100</td>
<td>0C</td>
<td>MSSAGE G</td>
<td>Canned Message</td>
</tr>
<tr>
<td>000-1101</td>
<td>0D</td>
<td>MSSAGE H</td>
<td>Canned Message</td>
</tr>
<tr>
<td>000-1110</td>
<td>0E</td>
<td>MSSAGE J</td>
<td>Canned Message</td>
</tr>
<tr>
<td>000-1111</td>
<td>0F</td>
<td>MAN DOWN</td>
<td>Man Down</td>
</tr>
<tr>
<td>100-1010</td>
<td>4A</td>
<td>DSBL ACK</td>
<td>Radio Disable Ack</td>
</tr>
<tr>
<td>101-1010</td>
<td>5A</td>
<td>ENBL ACK</td>
<td>Radio Enable Ack</td>
</tr>
<tr>
<td>(not listed)</td>
<td>(not listed)</td>
<td>UNDEFINE</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

MDC-1200® Message Type

To increase flexibility of the VME-100 and enhance compatibility with existing communications systems, the format of encoded MDC-1200® messages can be modified. The default message type for a PTT ANI is represented by 0x8001 and the default message type for an Emergency ANI is 0x8000. These parameters should not be changed without a thorough understanding of the signaling system and existing signaling codes.
GE Star® Format Types

Radio systems using GE Star® can define the T1, T2 and S1 bits to have different values or various meanings. Industry-wide, there are sixteen accepted variants with Format “B” being the industry de facto standard. The VME-100 is programmable for any of the sixteen variants.

Format Definitions

The following table defines the sixteen GE Star® formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
<th>T1</th>
<th>T2</th>
<th>S1</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IDs to 2047 (1st 11 bits)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>T1, T2, and S1 ignored</td>
</tr>
<tr>
<td>B</td>
<td>IDs to 16383 (14 bit ID)</td>
<td>8192</td>
<td>4096</td>
<td>2048</td>
<td>Expanded-ID STAR #1.</td>
</tr>
<tr>
<td>C</td>
<td>IDs to 16383 (14 bit ID)</td>
<td>4096</td>
<td>8192</td>
<td>2048</td>
<td>GE-STAR #3.</td>
</tr>
<tr>
<td>D</td>
<td>IDs to 16383 (14 bit ID)</td>
<td>4096</td>
<td>2048</td>
<td>8192</td>
<td>Compatible with GE-STAR #4</td>
</tr>
<tr>
<td>E</td>
<td>IDs to 4095 (12 bit ID, T2 = "0")</td>
<td>2048</td>
<td>M0</td>
<td>X</td>
<td>GE-STAR #1. T2 = "0" for Mobile.</td>
</tr>
<tr>
<td>F</td>
<td>IDs to 4095 (12 bit ID, T2 = "1")</td>
<td>2048</td>
<td>P1</td>
<td>X</td>
<td>GE-STAR #1. T2 = "1" for Portable.</td>
</tr>
<tr>
<td>G</td>
<td>IDs to 8191 (13 bit ID, T2 = "0")</td>
<td>4096</td>
<td>M0</td>
<td>2048</td>
<td>GE-STAR #2. T2 = "0" for Mobile.</td>
</tr>
<tr>
<td>H</td>
<td>IDs to 8191 (13 bit ID, T2 = "1")</td>
<td>4096</td>
<td>P1</td>
<td>2048</td>
<td>GE-STAR #2. T2 = "1" for Portable.</td>
</tr>
<tr>
<td>I</td>
<td>IDs to 4095 (12 bit ID), Tags="00"</td>
<td>0</td>
<td>0</td>
<td>2048</td>
<td>System "0"</td>
</tr>
<tr>
<td>J</td>
<td>IDs to 4095 (12 bit ID), Tags="01"</td>
<td>0</td>
<td>1</td>
<td>2048</td>
<td>System "1"</td>
</tr>
<tr>
<td>K</td>
<td>IDs to 4095 (12 bit ID), Tags="10"</td>
<td>1</td>
<td>0</td>
<td>2048</td>
<td>System "2"</td>
</tr>
<tr>
<td>L</td>
<td>IDs to 4095 (12 bit ID), Tags="11"</td>
<td>1</td>
<td>1</td>
<td>2048</td>
<td>System "3"</td>
</tr>
<tr>
<td>M-P</td>
<td>IDs to 2047 (11 bit ID)</td>
<td>X</td>
<td></td>
<td></td>
<td>Identical to I - L with capability only to program IDs to max of 2047.</td>
</tr>
</tbody>
</table>

Value Assignment

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>If bit is set, add 8192 to ID</td>
<td>8192</td>
</tr>
<tr>
<td>If bit is set, add 4096 to ID</td>
<td>4096</td>
</tr>
<tr>
<td>If bit is set, add 2048 to ID</td>
<td>2048</td>
</tr>
<tr>
<td>If the bit is not set, originator is a Mobile</td>
<td>M0</td>
</tr>
<tr>
<td>If the bit is set, originator is a Portable</td>
<td>P1</td>
</tr>
<tr>
<td>This bit is ignored</td>
<td>X</td>
</tr>
</tbody>
</table>

For System types I through P, the C Plus decoder looks for a match in the T1 and T2 bits. If the bits match then the C Plus decoder will react to the received message. If not, the message is ignored. This is for communications systems that have multiple unrelated users so that different users do not see ID’s from other users.
Radio Connections

<table>
<thead>
<tr>
<th>Conn Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>TRX</td>
<td>TX/RX Status Input: TX="H" RX="L"</td>
</tr>
<tr>
<td>9</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>14</td>
<td>AFOut</td>
<td>Audio out from VME-100</td>
</tr>
<tr>
<td>16</td>
<td>AFIn</td>
<td>Audio in to VME-100</td>
</tr>
<tr>
<td>17</td>
<td>SD</td>
<td>Sub CPU Clock Shift</td>
</tr>
<tr>
<td>18</td>
<td>MicOut</td>
<td>TX audio out from VME-100</td>
</tr>
<tr>
<td>20</td>
<td>MicIn</td>
<td>Mic TX audio in to VME-100</td>
</tr>
<tr>
<td>22</td>
<td>OpTypeStb</td>
<td>Option board sense</td>
</tr>
<tr>
<td>24</td>
<td>KEY4M</td>
<td>Key Matrix Col 4</td>
</tr>
<tr>
<td>25</td>
<td>OpTyp</td>
<td>Option board sense</td>
</tr>
<tr>
<td>26</td>
<td>KEY3M</td>
<td>Key Matrix Col 3</td>
</tr>
<tr>
<td>28</td>
<td>KEY2M</td>
<td>Key Matrix Col 2</td>
</tr>
<tr>
<td>30</td>
<td>KEY1M</td>
<td>Key Matrix Col 1</td>
</tr>
<tr>
<td>31</td>
<td>SIG</td>
<td>Sig Mon noise squelch</td>
</tr>
<tr>
<td>32</td>
<td>KS4M</td>
<td>Key Matrix Row 4</td>
</tr>
<tr>
<td>33</td>
<td>SUBCPU Reset</td>
<td>Sub CPU Reset</td>
</tr>
<tr>
<td>34</td>
<td>KS3M</td>
<td>Key Matrix Row 3</td>
</tr>
<tr>
<td>35</td>
<td>RXD</td>
<td>Receive data from VME-100</td>
</tr>
<tr>
<td>36</td>
<td>KS2M</td>
<td>Key Matrix Row 2</td>
</tr>
<tr>
<td>37</td>
<td>TXD</td>
<td>Transmit data to VME-100</td>
</tr>
<tr>
<td>38</td>
<td>KS1M</td>
<td>Key Matrix Row 1</td>
</tr>
<tr>
<td>39</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>40</td>
<td>VDD1</td>
<td>3.5VDC ± 10%</td>
</tr>
</tbody>
</table>

Micro to Micro Communications

The microprocessor of the host radio and the microprocessor of the VME-100 communicate with each other using one-byte hex commands. This interaction allows the VME-100 to control many functions of the host radio.

Software Version Verification

To verify the version of the microprocessor software, press the # (pound) key followed by the * (asterisk) key. The embedded software check sum will be displayed in the radio display.

Reloading Flash

If upgraded flash software becomes available, the new software can be loaded into the VME-100 by performing the following procedure.

Start the terminal emulation program “Hyperterm”. This program must be set up for direct connect to Com 1 at 4800, N,8,1 with no handshaking. After the program is set up, Go to “File”, select “Properties” then select the tab labeled “Settings”. Change emulation type to “TTY”. Click the “ASCII Setup” button and change the character delay to 3 mS.
WARNING: Do not turn the radio off until you have successfully loaded a new VME-100 program. If power is turned off, the board will need to be returned to Cimarron Technologies for reprogramming.

Connect the programming cable between the radio and the PC COM port.

Place the radio in Sub Clone mode by pressing the PTT button and the orange button simultaneously and then turning power on. The radio display will show: “SUB CLON”.

At the Hyperterm computer, press “A” (upper case). The radio will respond with “Reprogram?”. To erase Sub CPU program memory and proceed, press “Y”, “C”, “I”, “M”. The radio will respond with “0” indicating that the flash has been erased and the unit is ready to receive a new program. Pressing any other sequence of keys exits without erasing the Sub CPU program memory.

From Hyperterm menu, select <Transfer><Send Text File>. Select the specified binary file and begin sending. Ignore characters streaming across screen (these are binary characters echoed by some Yaesu cables).

When the load is successfully completed, the final character on the hyperterm display will show “1”. If the load was not successful, the display will show “0” and the flash will be again erased and await the download. **DO NOT POWER-OFF THE RADIO UNTIL A NEW SUB-CPU PROGRAM HAS BEEN SUCCESFULLY LOADED.**
Schematic

NOTES:

1. INSTALL CS & CT ONLY WITH NON-VARACTOR CIRCUIT

PCB No.: 02100018

SIMRADIN TECHNOLOGIES

FRD

VME-160

B: 02 30 0018

A: A00011

B: 00000001

675

Chapter 4 Technical Information
Parts List

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Mfgr</th>
<th>Mfgr P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B C2,7</td>
<td>CAP 5% NPO 22pF</td>
<td>0603</td>
<td>MURATA GRM1885C2A220JA01D</td>
</tr>
<tr>
<td>1</td>
<td>C14</td>
<td>CAP 5% NPO 30pF</td>
<td>0603</td>
<td>MURATA GRM1885C2A300JA01D</td>
</tr>
<tr>
<td>1</td>
<td>C16</td>
<td>CAP 5% NPO 120pF</td>
<td>0603</td>
<td>KEMET C0603C121J5GACTU</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>CAP 5% NPO 330pF</td>
<td>0603</td>
<td>KEMET C0603C221J5GACTU</td>
</tr>
<tr>
<td>2</td>
<td>C9,13</td>
<td>CAP 10% X7R 1800pF</td>
<td>0603</td>
<td>MURATA GRM18872A182KA01D</td>
</tr>
<tr>
<td>1</td>
<td>C4</td>
<td>CAP 10% X7R 3300pF</td>
<td>0603</td>
<td>KEMET C0603C332K5RACTU</td>
</tr>
<tr>
<td>2</td>
<td>C8,10</td>
<td>CAP 10% X7R 5600pF</td>
<td>0603</td>
<td>MURATA GRM188R71H562KA01D</td>
</tr>
<tr>
<td>1</td>
<td>C14</td>
<td>CAP 10% X7R 0.01uF</td>
<td>0603</td>
<td>KEMET C0603C103K5RACTU</td>
</tr>
<tr>
<td>2</td>
<td>C11</td>
<td>CAP 10% X7R 0.1uF</td>
<td>0603</td>
<td>KEMET C0603C104K4RACTU</td>
</tr>
<tr>
<td>1</td>
<td>C17</td>
<td>CAP TANT 10V 20%4.7uF</td>
<td>3216</td>
<td>PANASONIC ECS-T1AY475R</td>
</tr>
<tr>
<td>1</td>
<td>R23</td>
<td>Not Installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R19</td>
<td>RES 5% 1/16W 0 Ohm</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ000V</td>
</tr>
<tr>
<td>1</td>
<td>RN1</td>
<td>RES CHIP ARRAY 1K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R8-12,20</td>
<td>RES 5% 1/16W 10K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ103V</td>
</tr>
<tr>
<td>1</td>
<td>R13</td>
<td>RES 5% 1/16W 18K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ183V</td>
</tr>
<tr>
<td>2</td>
<td>R16,17</td>
<td>RES 5% 1/16W 20K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ203V</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>RES 5% 1/16W 27K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ273V</td>
</tr>
<tr>
<td>2</td>
<td>R14,22</td>
<td>RES 5% 1/16W 39K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ393V</td>
</tr>
<tr>
<td>3</td>
<td>R3,15,21</td>
<td>RES 5% 1/16W 100K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ104V</td>
</tr>
<tr>
<td>1</td>
<td>R18</td>
<td>RES 5% 1/16W 150K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ154V</td>
</tr>
<tr>
<td>3</td>
<td>A R5-7</td>
<td>RES 5% 1/16W 330K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ334V</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>RES 5% 1/16W 470K</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ474V</td>
</tr>
<tr>
<td>1</td>
<td>A R4</td>
<td>RES 5% 1/16W 1M</td>
<td>0603</td>
<td>PANASONIC ERJ-3GEYJ105V</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>IC AN. SW. 4S66</td>
<td></td>
<td>TOSHIBA TC4S66F(T85L)</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>IC OP AMP TLV2772</td>
<td></td>
<td>T.I. TLV2772IDGKR</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>IC uCONT MSP430F1232</td>
<td></td>
<td>T.I. MSP430F1232IPW</td>
</tr>
<tr>
<td>2</td>
<td>A D1,3</td>
<td>TUNING DIODE MMBV609</td>
<td></td>
<td>ON SEMI MMBV69LT1</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>DIODE SM. SIG. D914/4148</td>
<td></td>
<td>FAIRCHILD MMDA4148</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>CONNECTOR 40 POS</td>
<td></td>
<td>AROMAT AXK5S40035P</td>
</tr>
<tr>
<td>1</td>
<td>Y1</td>
<td>CRYSTAL 7.3728MHz</td>
<td></td>
<td>FOX 219-7.3728-14</td>
</tr>
</tbody>
</table>

A =PULLED CRYSTAL CKT B=SIMPLE CRYSTAL CKT
Parts Layout

Test Pinout

Pad Assignments

<table>
<thead>
<tr>
<th>Pad</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>JTAG</td>
</tr>
<tr>
<td>11</td>
<td>JTAG</td>
</tr>
<tr>
<td>10</td>
<td>JTAG</td>
</tr>
<tr>
<td>9</td>
<td>JTAG</td>
</tr>
<tr>
<td>8</td>
<td>RESET</td>
</tr>
<tr>
<td>7</td>
<td>JTAG Test</td>
</tr>
<tr>
<td>6</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>3.5 VDC</td>
</tr>
<tr>
<td>4</td>
<td>RXD</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
</tr>
<tr>
<td>2</td>
<td>Data Out</td>
</tr>
<tr>
<td>1</td>
<td>Beep</td>
</tr>
</tbody>
</table>
Chapter 5 Product Support

If you have any questions or comments about Cimarron products, please make use of our technical support hotline at (760) 738-3283.

Cimarron Technologies Corporation
934 South Andreasen Drive, Suite G
Escondido, CA 92029
Technical Support Hot-Line (760) 738-3283
service@cimtechcorp.com
www.cimtechcorp.com

WARRANTY
Cimarron Technologies Corporation warrants this product to be free from defects in material and workmanship for a period of one year from date of shipment. If a malfunction occurs due to defective material or workmanship, the product will be repaired or replaced (Cimarron's discretion) without charge if returned to the factory.

This warranty does not apply to any failure or damage caused by accident, neglect, unreasonable use, improper installation, or to alterations or modifications to the unit. Nor does the warranty extend to damage incurred by force majeure (natural causes) such as lightning, fire, floods, or other such catastrophes, nor to damage caused by environmental extremes, power surges and/or transients.

Cimarron Technologies Corporation makes no other warranty, either expressed or implied, with respect to this product. Cimarron Technologies Corporation specifically disclaims the implied warranties of merchantability and fitness for a particular purpose. Some states or provinces do not allow limitations on how long an implied warranty lasts, so the above limitation or exclusion may not apply to you.

The remedies provided herein are customer's sole and exclusive remedies. In no event shall Cimarron Technologies Corporation be liable for any lost profits, direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.
INDEX

A
- Attack delay ... 6, 10, 11

C
- Capabilities .. 5
- CE-73 ... 7
- Continuing conversations 15
- Courtesy beep .. 5, 15

D
- Downloading .. 9
- DTMF character duration 11, 13, 16
- DTMF emergency ID 11, 14, 16
- DTMF inter-character duration 11, 13
- DTMF keypad auto transmit 11, 16
- DTMF PTT ID ... 11, 13, 16

E
- Emergency ... 15
- Emergency message 5
- Emergency message open mic monitor 15
- Emergency message repeat 15
- Emergency warning tone 10, 15
- Enable keypad .. 10

F
- Features .. 5

G
- GE Star message descriptions 17
- GE Star® emergency message value 11
- GE Star® emergency ID 11
- GE Star® format type 10
- GE Star® format type 18
- GE Star® PTT ID 10, 13
- GE Star® PTT message value 11
- GE Star® TOT message value 11
- Go-ahead beep .. 5

M
- Manual keypad DTMF 11, 16
- MDC-1200® emergency ID 10
- MDC-1200® emergency message value 10
- MDC-1200® message type 13, 17
- MDC-1200® PTT ID 10, 13
- MDC-1200® PTT message value 10
- Micro to micro communications 19
- Microphone .. 15

N
- Non-volatile memory 14

O
- Open microphone monitor 10, 12

P
- Parts layout ... 23
- Per-channel format selection 9
- Product support 24
- Programming .. 10
- Programming software 7
- PTT ... 15
- PTT ANI repeat timer 10, 11

R
- Radio connections 19
- Radio programming software 9
- Reducing data transmissions 15
- Repeat emergency transmissions 10, 15
- Review ... 15

S
- Schematic .. 21
- Send ID at beginning 10
- Send ID at end 10
- Sidetone with PTT ANI 10
- Soft ID ... 15
- Software version 19
- Specifications 6
- Stuck microphone identification 16
Sub clone mode ... 20

T

Technical Information 17
Test pinout .. 23
Time between emergency repeats .. 10, 11, 12, 15, 16
Time out timer ... 10, 11, 16
TX data level .. 10

U

Unkey courtesy tone 10
Upgrading flash ... 19
Uploading .. 9

W

WARRANTY ... 24